132 research outputs found

    Atmospheric effects and spurious signals in GPS analyses

    Get PDF
    Improvements in the analyses of Global Positioning System (GPS) observations yield resolvable millimeter to submillimeter differences in coordinate estimates, thus providing sufficient resolution to distinguish subtle differences in analysis methodologies. Here we investigate the effects on site coordinates of using different approaches to modeling atmospheric loading deformation (ATML) and handling of tropospheric delays. The rigorous approach of using the time-varying Vienna Mapping Function 1 yields solutions with lower noise at a range of frequencies compared with solutions generated using empirical mapping functions. This is particularly evident when ATML is accounted for. Some improvement also arises from using improved a priori zenith hydrostatic delays (ZHD), with the combined effect being site-specific. Importantly, inadequacies in both mapping functions and a priori ZHDs not only introduce time-correlated noise but significant periodic terms at solar annual and semiannual periods. We find no significant difference between solutions where nontidal ATML is applied at the observation level rather than as a daily averaged value, but failing to model diurnal and semidiurnal tidal ATML at the observation level can introduce anomalous propagated signals with periods that closely match the GPS draconitic annual (āˆ¼351.4 days) and semiannual period (āˆ¼175.7 days). Exacerbated by not fixing ambiguities, these signals are evident in both stacked and single-site power spectra, with each tide contributing roughly equally to the dominant semiannual peak. The amplitude of the propagated signal reaches a maximum of 0.8 mm with a clear latitudinal dependence that is not correlated directly with locations of maximum tidal amplitude.Australian Research Councilā€™s Discovery Project

    Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data

    Get PDF
    Troposphere mapping functions are used in the analyses of Global Positioning System and Very Long Baseline Interferometry observations to map a priori zenith hydrostatic and wet delays to any elevation angle. Most analysts use the Niell Mapping Function (NMF) whose coefficients are determined from site coordinates and the day of year. Here we present the Global Mapping Function (GMF), based on data from the global ECMWF numerical weather model. The coefficients of the GMF were obtained from an expansion of the Vienna Mapping Function (VMF1) parameters into spherical harmonics on a global grid. Similar to NMF, the values of the coefficients require only the station coordinates and the day of year as input parameters. Compared to the 6-hourly values of the VMF1 a slight degradation in short-term precision occurs using the empirical GMF. However, the regional height biases and annual errors of NMF are significantly reduced with GMF

    Multitechnique Assessment of the Interannual to Multidecadal Variability in Steric Sea Levels: A Comparative Analysis of Climate Mode Fingerprints

    Get PDF
    Because of increased emissions of greenhouse gases oceans are warming, causing sea level to rise as the density of seawater falls. Predicting the rates of steric expansion is challenging because of the natural variability of the ocean and because observations are insufficient to adequately cover the ocean basins. Here, we investigate the ability of one ocean reanalysis, two objective analyses, and one combination of satellite geodetic measurements to accommodate data gaps and to reconstruct typical patterns of the steric sea level variability at interannual and multidecadal time scales. Six climate indices are used to identify robust features of the internal variability, using a Least Absolute Shrinkage and Selection Operator (LASSO) regression to select significant predictors of the steric variability. Spatially consistent fingerprints are revealed for all climate indices in the ocean reanalysis dataset, allowing the recovery of most of the steric variability observed in the tropical and North Pacific, as well as large fractions of the Atlantic and Indian Ocean signals. Robust climate mode fingerprints are also identified with high spatial resolution but limited temporal coverage in the geodetic observations. The objective analyses fail to detect many of the patterns expected from climate modes, especially before the Argo era. Climate indices constitute valuable yet underexploited tools to assess the performance of different techniques to reconstruct steric sea levels at interannual and multidecadal scales. Such progress will increase confidence in the historical reconstructions of steric sea levels, which is necessary to improve the closure of regional and global sea level budgets and to validate the predictions of climate models.The research was funded by the Australian Research Council (Discovery Project: 160100070)

    Forecasting dryland vegetation condition months in advance through satellite data assimilation

    Get PDF
    Dryland ecosystems are characterised by rainfall variability and strong vegetation response to changes in water availability over a range of timescales. Forecasting dryland vegetation condition can be of great value in planning agricultural decisions, drought relief, land management and fire preparedness. At monthly to seasonal time scales, knowledge of water stored in the system contributes more to predictability than knowledge of the climate system state. However, realising forecast skill requires knowledge of the vertical distribution of moisture below the surface and the capacity of the vegetation to access this moisture. Here, we demonstrate that contrasting satellite observations of water presence over different vertical domains can be assimilated into an eco-hydrological model and combined with vegetation observations to infer an apparent vegetation-accessible water storage (hereafter called accessible storage). Provided this variable is considered explicitly, skilful forecasts of vegetation condition are achievable several months in advance for most of the worldā€™s drylands.This research was supported through ARC Discovery grant DP140103679. We thank Professor Michael L. Roderick and Professor Jeffery P. Walker for their kind help and suggestions in data analysis. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government

    Estimating network effect in geocenter motion: Theory

    Get PDF
    Geophysical models and their interpretations of several processes of interest, such as sea level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize the International Terrestrial Reference Frame. However, this realization needs to take into account the geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example, deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a discrepancy, known as the network effect, between the theoretically convenient center of figure and the physically accessible center of network frames, because of unavoidable factors such as uneven station distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use, as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a random network of the same size N. We show that our estimate scales as math formula and give an explicit formula for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary paper we apply this formalism to coseismic displacements and elastic deformations due to surface water movements.The first author was supported by an Australian Postgraduate Award. For this work we adopted the modified version of PREM [Dziewonski and Anderson, 1981] included in the STATIC1D package (https://earthquake.usgs.gov/ research/software/#STATIC1D) by Fred Pollitz. Figure 5 was generated from the degree-1 gravitational potential time series computed by Swenson et al. [2008] (ftp://podaac.jpl.nasa.gov/allData/ tellus/L2/degree_1/). We thank the anonymous reviewers for their useful suggestions

    Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea

    Get PDF
    We show results from a network of campaign Global Positioning System (GPS) sites in the Woodlark Rift, southeastern Papua New Guinea, in a transition from seafloor spreading to continental rifting. GPS velocities indicate anticlockwise rotation (at 2ā€“2.7Ā°/Myr, relative to Australia) of crustal blocks north of the rift, producing 10ā€“15 mm/yr of extension in the continental rift, increasing to 20ā€“40 mm/yr of seafloor spreading at the Woodlark Spreading Center. Extension in the continental rift is distributed among multiple structures. These data demonstrate that low-angle normal faults in the continents, such as the Mai'iu Fault, can slip at high rates nearing 10 mm/yr. Extensional deformation observed in the D'Entrecasteaux Islands, the site of the world's only actively exhuming Ultra-High Pressure (UHP) rock terrane, supports the idea that extensional processes play a critical role in UHP rock exhumation. GPS data do not require significant interseismic coupling on faults in the region, suggesting that much of the deformation may be aseismic. Westward transfer of deformation from the Woodlark Spreading Center to the main plate boundary fault in the continental rift (the Mai'iu fault) is accommodated by clockwise rotation of a tectonic block beneath Goodenough Bay, and by dextral strike slip on transfer faults within (and surrounding) Normanby Island. Contemporary extension rates in the Woodlark Spreading Center are 30ā€“50% slower than those from seafloor spreading-derived magnetic anomalies. The 0.5 Ma to present seafloor spreading estimates for the Woodlark Basin may be overestimated, and a reevaluation of these data in the context of the GPS rates is warranted

    Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia

    Get PDF
    The Murray-Darling Basin in southeast Australia is experiencing one of the most severe droughts observed recently in the world, driven by several years of rainfall deficits and record high temperatures. This paper provides new basinā€scale observations of the multiyear drought, integrated to a degree rarely achieved on such a large scale, to assess the response of water resources and the severity of the drought. A combination of Gravity Recovery and Climate Experiment (GRACE) data with in situ and modeled hydrological data shows the propagation of the water deficit through the hydrological cycle and the rise of different types of drought. Our observations show the rapid drying of soil moisture and surface water storages, which reached nearā€stationary low levels only āˆ¼2 years after the onset of the drought in 2001, with a loss of āˆ¼80 and āˆ¼12 km3 between January 2001 and January 2003, respectively. The multiyear drought has led to the almost complete drying of surface water resources which account for most of the water used for irrigation and domestic purposes. High correlation between observed groundwater variations and GRACE data substantiates the persistent reduction in groundwater storage, with groundwater levels still declining 6 years after the onset of the drought (groundwater loss of āˆ¼104 km3 between 2001 and 2007). The hydrological drought continues even though the region returned to average annual rainfall during 2007

    A decade of horizontal deformation from great earthquakes

    Get PDF
    The 21st Century has seen the occurrence of 17 great earthquakes (Mw >8), including some of the largest earthquakes ever recorded. Numerical modeling of the earthquakes shows that nearly half of the Earth's surface has undergone horizontal coseismic defo

    Relationship between glacial isostatic adjustment and gravity perturbations observed by GRACE

    Get PDF
    The Gravity Recovery and Climate Experiment space gravity mission provides one of the principal means of estimating present-day mass loss occurring in polar regions. Extraction of the mass loss signal from the observed gravity changes is complicated by the need to first remove the signal of ongoing glacial isostatic adjustment (GIA) since the Last Glacial Maximum. This can be problematic in regions such as Antarctica where the GIA models are poorly constrained by observation and their accuracy is not well known. We present a new methodology that permits the GIA component to be represented mathematically by a simple, linear expression of the ratio of viscoelastic Love numbers that is valid for a broad range of Earth and ice-load models. The expression is shown to reproduce rigorous computations of surface uplift rates to within 0.3 mm/yr, thus providing a means of inverting simultaneously for present-day mass loss and ongoing GIA with all the accuracy of a fully detailed forward model

    Tropical cyclones and the ecohydrology of Australia's recent continental-scale drought

    Get PDF
    The Big Dry, a recent drought over southeast Australia, began around 1997 and continued until 2011. We show that between 2002-2010, instead of a localized drought, there was a continent-wide reduction in water storage, vegetation and rainfall, spanning the northwest to the southeast of Australia. Trends in water storage and vegetation were assessed using Gravity Recovery and Climate Experiment (GRACE) and Normalized Difference Vegetation Index (NDVI) data. Water storage and NDVI are shown to be significantly correlated across the continent and the greatest losses of water storage occurred over northwest Australia. The frequency of tropical cyclones over northwest Australia peaked just prior to the launch of the GRACE mission in 2002. Indeed, since 1981, decade-scale fluctuations in tropical cyclone numbers coincide with similar variation in rainfall and vegetation over northwest Australia. Rainfall and vegetation in southeast Australia trended oppositely to the northwest prior to 2001. Despite differences between the northwest and southeast droughts, there is reason to believe that continental droughts may occur when the respective climate drivers align
    • ā€¦
    corecore